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Summary

� A higher minimum (night-time) temperature is considered a greater limiting factor for

reduced rice yield than a similar increase in maximum (daytime) temperature. While the physi-

ological impact of high night temperature (HNT) has been studied, the genetic and molecular

basis of HNT stress response remains unexplored.
� We examined the phenotypic variation for mature grain size (length and width) in a diverse

set of rice accessions under HNT stress. Genome-wide association analysis identified several

HNT-specific loci regulating grain size as well as loci that are common for optimal and HNT

stress conditions.
� A novel locus contributing to grain width under HNT conditions colocalized with Fie1, a

component of the FIS-PRC2 complex. Our results suggest that the allelic difference control-

ling grain width under HNT is a result of differential transcript-level response of Fie1 in grains

developing under HNT stress.
� We present evidence to support the role of Fie1 in grain size regulation by testing overex-

pression (OE) and knockout mutants under heat stress. The OE mutants were either unaltered

or had a positive impact on mature grain size under HNT, while the knockouts exhibited sig-

nificant grain size reduction under these conditions.

Introduction

Much of the extraordinary period of exponential crop productiv-
ity over the second half of the 20th century is owed to the success
of the Green Revolution (Wik et al., 2008; Pingali, 2012; Bailey-
Serres et al., 2019). Despite increasing land scarcity and rising
population, the development of high-yielding cultivars and
improved agronomic practices have substantially decreased food
deficits (Foley et al., 2011; Pingali, 2012). Although these
improvements have reduced poverty and malnourishment, sus-
taining these gains will require even greater innovations to
address the present-day challenges in agriculture. In this context,
climate change, especially the rising temperatures, threatens crop
productivity (Porter & Gawith, 1999; Zhao et al., 2017). The
global mean surface air temperature has increased by 0.5°C over
the last century, which in part is a result of a faster increase in
daily minimum temperatures (Tmin) compared with daily maxi-
mum temperatures (Tmax) (Karl et al., 1993; Easterling et al.,
1997; Vose et al., 2005; Lobell, 2007; Thorne et al., 2016; Sun
et al., 2019). Rice, which is a major source of calories and

household income in many developing countries (Khush, 2005;
Khush & Jena, 2009; Muthayya et al., 2014; Jagadish et al.,
2015), is highly sensitive to increments in average minimum tem-
peratures. Field-level studies indicate a nearly 10% decline in
grain yield for every 1°C increment in Tmin (Peng et al., 2004;
Lyman et al., 2013). An extensive regional (tropical/subtropical
Asia) scale study suggested that rice productivity improved with a
small increase in Tmax but declined with higher Tmin, which is
projected to have a net negative impact on the rice yield (Welch
et al., 2010). Further, it has been shown that Tmin has increased
more sharply than Tmax for some of the major rice-growing
regions of the world (Zhou et al., 2004; Padma Kumari et al.,
2007).

Rice yield is a quantitative trait determined by the number of
panicles, number of grains per panicle and grain weight
(Sakamoto & Matsuoka, 2008; Xing & Zhang, 2010). Grain
weight is predominantly determined by grain size – a function of
grain length, width, and thickness as well as its degree of filling
(Olsen, 2004; Hong et al., 2015). Genome-wide association
studies (GWAS) have identified major quantitative trait loci
(QTLs) or genes regulating grain size under optimal conditions,
for example GRAIN SIZE 2 (GS2), GS3, GRAIN LENGTH*These authors contributed equally to this work.
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AND WEIGHT 7 (GLW7), GRAIN WEIGHT 6a (GW6a),
GRAIN SHAPE 9 (GS9), GRAIN LENGTH 4 (GL4), GRAIN
SIZE ON CHROMOSOME 5 (GSE5), and GRAIN WIDTH 8
(GW8) (Fan et al., 2006; Wang et al., 2012; Che et al., 2015;
Duan et al., 2015, 2017; Hu et al., 2015; Song et al., 2015; Li
et al., 2016; Si et al., 2016; Sun et al., 2016; Wu et al., 2017;
Zhao et al., 2018). Several additional QTLs or genes involved in
signaling (G-proteins and mitogen-activated protein kinases) and
phytohormone homeostasis have also been reported to control
grain size (Li et al., 2018, 2019 and references therein). Collec-
tively, these studies have greatly advanced our understanding of
rice grain size regulation. However, it is not clear if these genetic
determinants will persist under higher temperatures predicted for
many rice-growing regions.

The effects of high day temperature (HDT) and high day-
night temperature (HDNT) on yield parameters are well studied.
For instance, heat stress during reproductive development results
in reduced seed set owing to decreased pollen viability (Prasad
et al., 2006; Zinn et al., 2010; Bokszczanin & Fragkostefanakis,
2013; Hasanuzzaman et al., 2013; Jagadish et al., 2015;
Fragkostefanakis et al., 2016; Röth et al., 2016; Arshad et al.,
2017). Heat stress during early grain development alters the tim-
ing of endosperm cellularization (Folsom et al., 2014; Chen
et al., 2016), while heat stress exposure during grain filling
impacts rice grain size and quality (Lisle et al., 2000; Kadan et al.,
2008; Fitzgerald et al., 2009; Sreenivasulu et al., 2015; Ali et al.,
2019). Recently, it has been suggested that high night tempera-
ture (HNT) negatively impacts rice grain yield, primarily because
of higher whole-plant respiratory rates (Ziska & Manalo, 1996;
Peng et al., 2004; Morita et al., 2005; Cheng et al., 2009; Ishi-
maru et al., 2009; Mohammed et al., 2013; Coast et al., 2015;
Peraudeau et al., 2015; Bahuguna et al., 2017). Higher night
temperatures can also alter the source-to-sink translocation of
nitrogen and nonstructural carbohydrates, leading to reduced
grain-filling rates, thus influencing grain weight, width, and qual-
ity parameters (Shi et al., 2013). By contrast, our understanding
of the genetic and molecular variation for HNT stress response in
rice germplasm is largely unexplored. Therefore, we examined a
diverse set of rice accessions from the rice diversity panel 1
(RDP1, Liakat Ali et al., 2011; Zhao et al., 2011; Eizenga et al.,
2014) to identify loci controlling mature grain size under HNT
by imposing a terminal HNT stress initiated just after fertiliza-
tion. Here, we present results from two of the grain size determi-
nants, length and width. GWAS revealed that Fie1, a component
of the FIS-PRC2 complex, regulates grain width under HNT but
is not a significant source of variation under optimal night tem-
peratures. We provide functional validation for the role of Fie1
in grain size regulation using overexpression and knockout
mutants under heat stress.

Materials and Methods

Plant material and growth conditions

We selected 273 accessions from the Rice Diversity Panel 1
(RDP1) corresponding to different subpopulations to screen for

response to HNT stress (Table S1). Dehulled grains were steril-
ized with bleach (40% v/v) and water and germinated in dark on
half-strength Murashige & Skoog media. Six seedlings per acces-
sion were transplanted to pasteurized soil in 4 inch (101.6 mm)
pots in a randomized complete block design. Plants were grown
in a glasshouse under controlled conditions (16 h 30 � 1°C : 8
h 23 � 1°C, light : dark, relative humidity 55–60%). At 1 d
after c. 50–70% of the primary panicle underwent flowering
(Sandhu et al., 2019), three plants from each accession were
transferred to a glasshouse under 16 h 30 � 1°C : 8 h 28 �
1°C, light : dark conditions for a terminal HNT treatment and
the remaining three plants for each accession were maintained
under the control glasshouse conditions (30 � 1°C : 23 � 1°C,
light : dark). HNT stress and control conditions for this study
represent the glasshouse air temperatures. All plants were har-
vested at physiological maturity. The primary panicles were
tagged at flowering and harvested separately.

Mature grain morphometric measurements and analysis

The harvested panicles were dried (30 � 1°C) for 2 weeks. The
dehulled mature grains from primary panicles were scanned using
an Epson Expression 12000 XL (Epson America Inc., Los
Alamitos, CA, USA) scanner at 600 dpi resolution (Dhatt et al.,
2019). The scanned images were used to obtain morphometric
measurements on mature grain size (length and width) using an
inhouse developed MATLAB application (Zhu et al., 2020). The
grain dimensions derived from the scanned grain images were
checked for normality and outliers were removed. The mature
grain size data were analyzed, and adjusted means for each acces-
sion across the replications were obtained using the following sta-
tistical model:

y ik ¼þg i þ r k þ ɛik

where y ik refers to the performance of the ith accession in the kth
replication, μ is the intercept, g i is the effect of the ith accession,
r k is the effect of kth replication, and ɛik is the residual error asso-
ciated with the observation y ik . All analyses was performed in the
R environment (R Core Team, 2019). Further, the adjusted
means of each accession were used for GWAS.

Genome-wide association study (GWAS)

For GWAS analysis, a high-density rice array (HDRA) of a
700k single nucleotide polymorphism (SNP) marker dataset
was used (McCouch et al., 2016). After filtering for the miss-
ing data (< 20%) and minor allele frequency (< 5%), 411 066
SNPs were retained for GWAS. Before GWAS, principle com-
ponent analysis (PCA) was performed (Zheng et al., 2012) to
assess the population structure of the rice accessions (Fig. S1).
Next, GWAS analysis was carried out in the R package RRBLUP

(Endelman, 2011) using the following single marker linear
mixed model:

y ¼ 1μþXβþ sαþZ g þ ɛ
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where, y is a vector of observations, μ is the overall mean, X is the
design matrix for fixed effects, β is a vector of principle compo-
nents accounting for population structure, s is a vector reflecting
the number of alleles (0, 2) of each genotype at particular SNP
locus, α is the effect of the SNP, Z is the design matrix for ran-
dom effects, g is the vector of random effects accounting for
relatedness and g ∼N 0,Gσ2g

� �
; G is the genomic relationship

matrix of the genotypes, σ2g is the genetic variance, and ɛ is the
vector of residuals. The outputs generated from GWAS analysis
were used to plot the Q-Q plots and Manhattan plots using the
QQMAN package in R (Turner, 2014). The suggested threshold
level of P < 3.3 × 10−6 or –log10(P) > 5.4 was used to declare
the genome-wide significance of SNP markers (Bai et al., 2016).
Additionally, R2-values representing phenotypic variance contri-
bution of each marker (or SNP) to the total variance were calcu-
lated using the BGLR package (Pérez & De Los Campos, 2014).
Narrow-sense heritability (h2) of the lead SNP with or without
accounting for linkage disequilibrium (LD) was estimated by
jointly fitting the lead SNP along with all the other SNPs or fit-
ting the lead SNP alone via a genomic restricted maximum likeli-
hood method (Yang et al., 2017) using the R package SOMMER

(Covarrubias-Pazaran, 2016) as h2 ¼ σ2g
σ2gþσ2e

, where σ2g is the
genetic variance and σ2e is the residual variance.

Generation of transgenic plants and gene expression
analysis

To generate CRISPR-Cas9 mutants for Fie1 (Os08g04290), sin-
gle-guide RNAs (sgRNAs) were designed using CRISPR-P 1.0
(http://crispr.hzau.edu.cn/CRISPR/) (Lei et al., 2014). CRISPR-
Cas9 constructs were developed following the protocols described
in Lowder et al. (2015). pYPQ141C vector was used to clone all
sgRNAs, which were then transferred to a destination vector
(pANIC6B) along with a vector containing Cas9 (pYPQ167)
using LR clonase. The destination vector was transformed into
Agrobacterium tumifaciens, which was further used to infect callii
of Kitaake, a temperate japonica accession that carries a major
allele for Fie1 (Paul et al., 2020a). For Fie1 knockout mutants,
T1 segregates carrying mutations and lacking Cas9 (confirmed
by β-glucuronidase screening assay) were considered for down-
stream analysis. T0, T1, and T2 plants were screened for muta-
tions by Sanger sequencing. T2 or later generations of mutants
(fie1CR2 and fie1CR3) were used in the study. Overexpression (OE)
mutants (Fie1OE10 and Fie1OE11) were considered from Folsom
et al. (2014).

Developing and mature grain analysis of Fie1mutants

To precisely assess the impact of high temperatures on Fie1
mutants with respect to grains, florets marked at the time of fer-
tilization (anthesis) were evaluated for downstream analysis: mor-
phometric measurements of developing and mature grain and
single-grain weight at maturity. For developing grain analysis,
florets were marked at the time of fertilization, and 1 d after fer-
tilization (DAF), plants were subjected to HNT (30 � 1°C : 28
� 1°C, light : dark), HDNT (36 � 1°C : 32 � 1°C, light :

dark) or constantly kept under control conditions (30 � 1°C :
23 � 1°C, light : dark). The marked florets from the respective
temperature treatments were harvested at 4, 7, and 10 DAF. The
images were processed using IMAGEJ (Abramoff et al., 2004) to
extract the developing grain length and width. For this, 15–20
marked florets from four plants per treatment per mutant line
were evaluated. For analysis of mature grain traits, plants were
subjected to HNT until maturity, HDNT from 1 to 10 DAF
and moved back to control, or constantly kept under control con-
ditions. The plants harvested at physiological maturity were used
for downstream analysis. For this, 300–600 marked grains from
15–20 plants per treatment per mutant line were evaluated at
maturity. For scanning electron microscopy (SEM), mature rice
grains were processed as described in Dhatt et al. (2019).

Genomic DNA and RNA extraction, RT-qPCR, and DNA
methylation assay

To screen for mutations in the knockouts, genomic DNA was
isolated from leaves using the sucrose method (Berendzen et al.,
2005). The region of interest was amplified using Kapa3G
Plant PCR Kits (Kapa Biosystems, Wilmington, MA, USA)
according to the manufacturer’s protocol. The amplicon was then
sequenced for genotyping. RNA extraction and quantitative
reverse transcription polymerase chain reaction (RT-qPCR) were
performed as described in Dhatt et al. (2019). Briefly, 1 µg of
total RNA extracted from developing grains (4, 7 and 10 DAF)
was used for cDNA synthesis. Gene-specific primers were used
for RT-qPCR. Ubiquitin (UBQ5) gene was used as reference
(Jain et al., 2006; Paul et al., 2020b). A minimum of two inde-
pendent biological replicates and three technical replicates were
used. The analysis was done using standard methods (Livak &
Schmittgen, 2001) and plotted as log2(fold-change) (Fragkoste-
fanakis et al., 2015). DNA methylation assay was performed
using the McrBC enzyme as described by Folsom et al. (2014).
Primers used in the study are listed in Table S2.

Results

Phenotypic variation for grain size under HNT stress

To determine the extent of phenotypic variation in rice for grain
size under heat stress, we imposed a terminal HNT treatment
beginning 1 d after flowering and a corresponding control tem-
perature treatment on 273 rice accessions from the rice diversity
panel 1 (RDP1; Fig. S1; Table S1). The grains harvested at physi-
ological maturity from the primary panicle were measured for
length and width. Both these parameters were normally dis-
tributed and were hence directly accessible for downstream
GWAS (Figs S2, S3). To gain an initial insight into the extent of
phenotypic variation for HNT response in the diversity panel, we
examined the accessions that exhibited high and low degrees of
sensitivity to HNT stress by comparing the upper and lower
tenth percentiles of accessions across grain length and width. For
grain length, 13 and 19 accessions corresponded to upper and
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lower tenth percentiles, respectively, while 10 and 18 acces-
sions corresponded to upper and lower tenth percentiles for
grain width, respectively (Table S3). The sensitivity or toler-
ance was determined by the ratio of HNT and control for
each of the parameters. We identified only three tolerant acces-
sions that exhibited low sensitivity (range 1.10–1.17; HNT/
control) for both mature grain length and width. Seven acces-
sions had high sensitivity (range 0.85–0.94) for these two traits
under HNT stress relative to control conditions (Table S3).
This suggested that tolerance to HNT stress for grain length
and width traits is probably determined independently in rice
(Philipp et al., 2018) as there are very few accessions that can
maintain both grain length and width under HNT stress con-
ditions.

Next, we aimed to elucidate the genetic basis of grain size vari-
ation under HNT stress and control conditions by performing
independent genome-wide association (GWA) analysis for
mature grain length and width (Figs 1, S4). We identified a total
of 63 significant SNPs associated with grain size under control
(length = 13, width = 8) and HNT stress (length = 13, width =
29) conditions (Table S4). The most significant SNP for mature
grain length was detected on chromosome (chr) 3
(chr3.16732086) under both control and HNT conditions (Fig.
1). The gene underlying this locus encodes GS3, a major regula-
tor of grain size (Fan et al., 2006) and explained 13.24% and
12.71% of phenotypic variation under control and HNT condi-
tions, respectively (Table S4). Further, heritability (h2) for this

SNP with and without correcting for linkage disequilibrium
(LD) was 0.35 and 0.42 under control and 0.37 and 0.46 under
HNT stress (Table S5). In addition, two significant SNPs
(chr4.4655556 and chr6.1112028) for grain length were detected
only under control conditions. The region spanning the SNP on
chr 4 has previously been reported as deformed interior floral
organ 1, which regulates rice reproductive development (Sun
et al., 2017). The SNP on chr 6 is an expressed protein
(Os06g03030). A single major locus on chr 12 (SNP:
chr12.25310347) was only detected for mature grain length
under HNT and explained 6.18% of phenotypic variation
(Table S4). This SNP is in the intergenic region of two expressed
proteins, Os12g40930 and Os12g40940, which have low tran-
script abundance in developing seeds. This HNT-specific locus is
not known to be associated with rice grain length in other map-
ping studies under optimal temperatures.

For grain width, we identified several SNPs that had a higher
significance under HNT or were only detected under HNT con-
ditions. For example, the peak on chr 5 had higher significance
under the HNT condition (P < 6.87) compared with the control
(P < 5.56). The lead SNP (chr5.5348012) underlying this peak
explained 4.1% and 6.3% of phenotypic variation under control
and HNT conditions, respectively (Table S4). The phenotypic
variation explained by this lead SNP is similar to the phenotypic
variation detected for the same SNP from previous studies
(Huang et al., 2010; Zhao et al., 2011), and this SNP corre-
sponds to qSW5/GW5, that is, a known regulator for grain width

Fig. 1 Manhattan plots of genome-wide association results for rice mature grain length (a) and width (b) under control and high night temperature (HNT)
stress conditions. The blue line indicates cutoff of significance threshold (P < 3.3 × 10−6 or −log10(P) > 5.4) level and significant single nucleotide
polymorphism (SNPs) are highlighted with maroon dots. The previously known major grain size genes/quantitative trait loci (QTLs) (GS3 and qSW5) under
optimal (unstressed) conditions are labeled. Fie1 (chr 8:2098482, SNP position) is a candidate gene for regulating phenotypic variation of grain width
under HNT conditions in rice (indicated with an arrow).
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(Weng et al., 2008; Duan et al., 2017; Liu et al., 2017; Kumar
et al., 2019). Another significant SNP for grain width that was
stronger under HNT was detected on chr 8. The lead SNP
(chr8.24070386) underlying this peak explained 5.7% of pheno-
typic variation and was in proximity with four genes
(Os08g37980, Os08g37990, Os08g38000 and Os08g38010)
encoding three expressed/hypothetical genes and a retrotrans-
poson (Tables S4, S6). A second significant SNP on chr 8 (SNP:
chr8.2098482; P < 5.65) was associated with grain width under
the HNT condition only (Fig. 1; Table S4). This SNP localizes
to the intronic region of Fertilization Independent Endosperm 1
(Fie1), which encodes for a protein component of the Polycomb
Repressive Complex 2 (FIS-PRC2; Figs 1, 2a). PRC2 is involved
in endosperm development in plants and some of the processes
regulated by PRC2 and Fie1 are sensitive to heat stress (Folsom
et al., 2014). Further, h2 values for this SNP with and without
correcting for LD were 0.19 and 0.31, respectively (Table S7).
Accounting for LD removes confounding effects arising from the
rest of genome-wide markers and provides a more realistic contri-
bution of Fie1 SNP to the total genetic variation. Considering all
these assessments, we reasoned that the Fie1 locus is a promising

candidate to examine further for genetic control of grain width
under HNT stress.

Allelic variation in Fie1may contribute to grain width under
HNT stress

The two allelic groups at chr8.2098482 SNP located in Fie1 dif-
fered in grain width under HNT stress and explained 4.88% of
phenotypic variation (Fig. 2a; Tables S4, S7). The group of
accessions (n = 190) exhibiting significantly higher mature grain
width under HNT have the ‘CC’ allele, referred to as the major
allele. The other group of accessions (n = 11) with lower mature
grain width under HNT have ‘GG’ allele and is referred to as the
minor allele (Fig. 2a,b). Although the mean value for grain width
for the major allelic group was higher than that of the minor
allelic group under control conditions, the difference was not sta-
tistically significant.

Rice Fie1 is only expressed in developing endosperm from 4 to
10 DAF (Zhang et al., 2012) and its transcript abundance is
altered in response to heat stress treatment (34°C : 29°C, light :
dark; Folsom et al., 2014). Therefore, we investigated whether

Fig. 2 Characterization of Fie1 locus as a determinant of grain width under high night temperature (HNT) stress in rice. (a) Upper panel: Fie1 gene model
with the significant single nucleotide polymorphism (SNP) position in the intron (exons, rectangle; intron, line). Lower panel: box plot showing the additive
effect of SNP8.2098482 under control and high night temperature (HNT) conditions; error bars represent � SD. The SNP is significant (−log10(P) = 5.65)
under HNT. The x-axis shows the allelic groups, major (CC) and minor (GG), and the y-axis shows grain width (mm). (b) Representative mature grain
images of four major (denoted as ‘M’; M1–M4) and minor (denoted as ‘m’; m1–m4) allelic group accessions under control and HNT conditions (n = 10
grains). Images were digitally extracted and scaled for comparison (bar, 1 cm). (c) Relative transcript abundance of Fie1 in the four major and minor allelic
group accessions at 4 and 7 d after fertilization (DAF) under HNT conditions. Values were normalized against control for the respective time point. Error
bars represent � SD (n = 10–15 developing seeds per biological replicate; two biological and three technical replicates were used). Significant differences
are depicted by asterisks (***, P < 0.001; **, P < 0.01; *, P < 0.05) based on a t-test.
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the Fie1 transcript abundance is also sensitive to HNT stress
alone, and if so, whether the allelic difference at the locus mani-
fests through differential transcript abundance. For this, we ran-
domly selected four accessions from each allelic group (Fig. 2b)
and measured transcript abundances of Fie1 under HNT stress
conditions, as well as re-evaluating mature grain size parameters
in the respective accessions (Fig. 2b,c; Table S8). The transcript
abundance of Fie1 coincides with the early grain-filling period in
rice (Fig. S5). The major allelic group accessions (M1–M4)
exhibited significantly higher transcript abundance of Fie1 in
developing grain at 7 DAF in response to HNT stress (Fig. 2c).
By contrast, minor allelic group accessions (m1–m4) showed sig-
nificantly lower Fie1 transcript abundances at 4 and 7 DAF
under HNT stress (Fig. 2c). This result supports our hypothesis
that Fie1 accounts for some of the genetic variation for grain
width under HNT stress. As Fie1 exhibits differential methyla-
tion status between leaves and developing seed tissue, we exam-
ined if the site of the lead SNP could be a casual SNP (CC vs
GG allele) resulting in differential transcript abundance owing to
presence of cytosine DNA methylation. We examined the methy-
lation status of the region encompassing the Fie1 SNP in the four
major and minor allelic accessions and did not find evidence of
DNA methylation at this SNP (Fig. S6). To assess whether varia-
tion in transcript abundance for nearby genes might be involved,
we examined the expression level response of four additional
genes in the two allelic groups under HNT (Fig. S7). We did not
detect any variations in transcript abundance for three of the four
neighboring genes (Os08g04270, Os08g04280 and Os08g04310)
in developing grains (4 and 7 DAF) of the two allelic groups
under HNT stress (Fig. S7). One of the neighboring genes
(Os08g04300) exhibited increased transcript abundance in devel-
oping grains (7 DAF) under HNT, but there was no difference
in the response between the major and minor allelic accessions
(Fig. S7). Overall, our results suggest that allelic difference in
Fie1 transcript abundance could be a determinant of grain width
under the HNT condition.

Fie1 negatively regulates grain width under control condi-
tions

To directly address whether Fie1 abundance in developing grain
regulates grain width under HNT stress, we generated OE lines
and CRISPR-Cas9 (CR)-based knockout mutants in Kitaake, a
temperate japonica cultivar, which naturally carries the major
allele (CC) for SNP chr 8:2098482. Two homozygous knockout
mutants (fie1CR2 and fie1CR3) had 1 bp insertions in the targeted
region and resulted in a premature stop codon, probably resulting
in truncated proteins (Fig. S8). The OE (fie1OE10 and fie1OE11)
showed a markedly reduced plant height, while no vegetative
stage phenotypic differences were observed for knockouts relative
to the wild-type (WT; Fig. S9). Under optimal growth condi-
tions, the OE mutants exhibited a significant decrease in grain
length and width compared with the WT, while knockouts
showed a significant increase in these two parameters at maturity
(Fig. 3a). These results are consistent with the observation of
outer epidermal cells of mature grains via scanning electron

microscopy (SEM), which show that the knockouts have
increased cell width and length as compared with the WT under
control conditions, while the OE mutants exhibited a decrease in
the respective parameters (Table S9). Further, we observed a sig-
nificant decline in single-grain weight for both OE and knockout
mutants at maturity; however, the reduction was more severe for
OE mutants than for knockouts (Fig. 3a). As Fie1 is preferen-
tially expressed in developing grains (from 4 to 10 DAF;
Fig. S5), we asked whether differences in grain length and width
observed in mutants and OE lines at maturity are discernible in
the developmental window that coincides with Fie1 activity. For
this, we recorded the growth dynamics of developing grains (4, 7
and 10 DAF) from the mutants under control conditions (Fig.
3b). We detected a significant decrease in developing grain length
and width for OE mutants relative to the WT (Fig. 3b). By con-
trast, knockouts exhibited an increase in developing grain length
and width relative to WT grains (Fig. 3b).

Grain width in Fie1 knockouts is sensitive to HNT

Next, we examined the phenotypic response of grains that are
overabundant or deficient in FIE1 under HNT stress conditions
(Fig. 4). As average Tmin is moderately and positively correlated
with Tmax for some of the major rice-growing regions in Asia
(Welch et al., 2010), we also included HDNT (36°C : 32°C,
light : dark) stress treatment to determine the impact of Fie1
misregulation on grain size under higher temperatures (Fig. 4).
Unlike the terminal HNT stress treatment, HDNT stress is more
severe, and hence it was only imposed from 1 to 10 DAF (Fig.
4a), which overlaps with Fie1 transcriptional activity (Fig. S5). It
is pertinent to point out that given the difference in intensity and
duration of these two stress treatments, they are not directly com-
parable for discerning the impact of daytime higher temperature.
The variation in means for WT mature grain length, width and
single-grain weight was not significant between the control and
HNT (Fig. 4b). However, grain size, length and weight were sig-
nificantly reduced when the WT plants were subjected to the
HDNT stress treatment (Fig. 4b). We detected significant (P <
0.001) reduction in mature grain length, width and single-grain
weight for fie1CR2 and fie1CR3 subjected to HNT (until physio-
logical maturity) and HDNT (from 1–10 DAF) compared with
the control (Fig. 4b). This is consistent with our earlier finding
that minor allele accessions with reduced Fie1 transcript abun-
dance had greater sensitivity to HNT stress. Collectively, our
results suggest that grains that are deficient in Fie1 are larger
(although they weigh less) than WT grains under control condi-
tions but are more sensitive to HNT stress with regard to grain
size.

Only one of the two OE mutant line (fie1OE11) exhibited a sig-
nificant (P < 0.05) increase in mature grain length subjected to
higher temperatures (Fig. 5b). However, it should be noted that
the control level for all these parameters in the OE lines was well
below that of WT, possibly as a result of reduced plant stature in
these lines. The OE mutant lines did not show any alteration
with respect to mature grain width and single-grain weight upon
exposure to both heat treatments (Fig. 5b). Similarly, OE
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mutants were insensitive to heat treatments with respect to
spikelet number and filled spikelet per panicle determined at the
whole-plant level (Table S10). We detected a similar outcome
from SEM observations of the outer epidermal cells of the mature
grain. While the knockouts and WT showed significant reduc-
tion in cell length and cell width of the outer epidermal cell on
exposure to higher temperatures, no alterations were observed for
OE mutants (Fig. 5; Table 1). Given the difference in seed size,
we examined the transcript abundance of several known rice
genes that positively (BIG GRAIN 1, BG1) or negatively (GRAIN
SIZE ON CHROMOSOME 5, GSE5; GRAIN LENGTH 7, GL7;
SLENDER GRAIN, SLG; WIDE THICK GRAIN 1, WTG1) reg-
ulate grain size. We observed that three out of the four negative
regulators show higher transcript abundance in knockout
mutants compared with the WT and OE mutants at 4, 7 and 10
DAF under higher temperatures (HNT and HDNT; Fig. S10).
By contrast, BG1 showed lower transcript abundance in the
knockouts compared with the WT and OE mutants at 7 and 10
DAF under higher temperatures (Fig. S10). These results suggest
that lower abundance of Fie1 in developing grains under heat
stress alters expression of several key rice grain size genes.

The contrasting response of OE and knockout Fie1 mutants
on mature grain phenotypes in response to heat stress led us to
investigate its effect on earlier stages of grain development (Fig.
6). For this, we examined the Fie1 transcript abundances at 4, 7,
and 10 DAF under HNT and HDNT in WT grains (Fig. 6a,b).
The Fie1 transcript abundance at 4 DAF declines significantly

under HNT as well as HDNT conditions relative to control (Fig.
6b). At 7 and 10 DAF, the Fie1 transcript abundance was signifi-
cantly lower under HDNT than under control conditions,
whereas it did not show any alteration under HNT at the 7 and
10 DAF time points. This suggested that the molecular response
of Fie1 to HNT and HDNT stress may be distinct over a tempo-
ral scale. We next measured the length and width of developing
grains corresponding to 4, 7 and 10 DAF, a developmental win-
dow that coincides with Fie1 transcript abundance (Fig. S5).
Consistent with the mature grain phenotype, WT and knockouts
exhibited thermal sensitivity as evident from the reduced develop-
ing grain length and width under HNT and HDNT relative to
control (Fig. 6c). On the other hand, fie1OE10 and fie1OE11

mutants showed a significant increase in developing grain length
and width under higher temperatures compared with the control.
Collectively, these results suggest that the grains deficient in Fie1
exhibit increased sensitivity for decrease in grain size and weight
under high temperatures, thus further supporting our hypothesis
that higher susceptibility of minor allelic group to HNT stress
could possibly be a result of lower transcript abundance of Fie1
under HNT compared with the major allelic group.

High night temperatures deteriorate grain quality in grains
deficient in Fie1

Exposure to high temperatures during grain development
greatly increases chalkiness in rice (Tashiro & Wardlaw, 1991;

Fig. 3 Fie1 negatively regulates grain width
under control conditions in rice. (a) Mature
grain length, width, and single-grain weight
of wild-type (WT), overexpression (Fie1OE10

and Fie1OE11) and knockout mutants (fie1CR2

and fie1CR3). Box plots show the median and
the upper quartiles and black dots signify
outliers. Significant differences (P < 0.05) are
indicated by different letters based on a t-test
(n = 300–600 marked seeds from 15–20
plants). (b) Developing grain length and
width of the mutants. Florets marked at the
time of fertilization were collected at the
respective developmental time points (4, 7
and 10 d after fertilization; DAF). Error bars
represent � SE. Significant differences are
depicted by asterisks (***, P < 0.001; **,
P < 0.01; *, P < 0.05) based on a t-test
(n = 15–20 marked developing grains from
four plants per line).
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Lisle et al., 2000; Tsutsui et al., 2013). Chalkiness is often a
result of loosely packed starch granules and abnormal protein
bodies (Wang et al., 2010) in the endosperm. Loose packing
creates more air space, resulting in decreased transmittance of
light. We observed increased chalkiness in Fie1 knockouts
when subjected to either HNT or HDNT (Fig. 7a). Further
inspection of mature rice grains of the Fie1 mutants via SEM
revealed structural abnormalities in starch granules. Less tightly
packed starch grains with a more rounded appearance were
seen in WT following HNT and HDNT treatment (Fig. 7b).
Mutant grains exhibited similar aberrations in starch structure
even under control treatment. These observations prompted us
to investigate transcript abundance of a selected set of genes
known to be involved in the starch biosynthesis pathway in the
developing grains (4, 7 and 10 DAF) of mutants subjected to
higher temperature treatments (HNT and HDNT; Fig. S11).
We analyzed six genes including the two subunits of ADP glu-
cose pyrophosphorylase (AGPase; AGPS2b and AGPL2a), gran-
ule bound starch synthase (GBSSI) that regulates amylose
biosynthesis (Wx), two starch synthase genes (SSIIa and SSIVb)
involved in amylopectin biosynthesis, and rice basic leucine
zipper (RISBZ1/ bZIP58) which regulates starch synthesis
genes. We detected higher transcript abundance for all the

tested genes in developing grains of mutants (both OE and
knockouts) under control conditions (Fig. S11a). Developing
grains of knockouts exhibited a general trend of reduced tran-
script abundances for most of the tested genes at all three
developmental time points under heat stress (HNT and
HDNT); however, the reduction was much more severe under
HDNT conditions (Fig. S11b). Interestingly, grains from the
OE mutants developing under HNT stress showed lower tran-
script abundances at 4 and 7 DAF, while their transcript
repression was relieved at 10 DAF for four of the six tested
genes (Fig. S11b).

We next examined whether the loose starch packaging associ-
ated with Fie1 knockouts is also observed in the minor allele
accessions under stress, given that minor allele accessions have
lower Fie1 transcript abundance relative to major allele accessions
under HNT conditions (Fig. 2). Our SEM scans indicate that
three of the four minor allele accessions have abnormal starch
packing when exposed to a terminal HNT stress (Fig. S12). The
four major and one minor allele accessions did not have an obvi-
ous starch packaging defect (Fig. S12). These results suggest that
the allelic variation associated with Fie1, which results in differen-
tial transcript abundance, could be a contributing factor in deter-
mining chalkiness under HNT stress conditions.

Fig. 4 Grain width in Fie1 knockouts in rice is
sensitive to high night temperature (HNT).
(a) Upper panel: pictogram illustrating heat
stress regime. Florets were marked at the
time of fertilization, and 1 d after fertilization
(DAF) plants were subjected to either HNT
(30 � 1°C : 28 � 1°C, , light : dark) until
maturity, high day-night temperature
(HDNT; 36 � 1°C : 32 � 1°C, , light : dark)
until 10 DAF and moved back to control
(30 � 1°C : 23 � 1°C, light : dark) or
constantly kept under control conditions.
Plants were harvested at physiological
maturity and the florets marked at the time
of fertilization were considered for
downstream analysis. (b) Mature grain
length (top panel), width (middle panel), and
single-grain weight (bottom panel) of wild-
type (WT), overexpression (fie1OE10 and
fie1OE11), and knockout mutants (fie1CR2 and
fie1CR3) under control (blue colored), HNT
(orange), and HDNT (red) conditions.
Box plots show the median and the upper
quartiles and black dots signify outliers (5th/
95th percentile). For statistics, a t-test was
used to compare HNT and HDNT with
control (n = 300–600 marked grains from
15–20 plants per plant line per treatment).
***, P < 0.001; **, P < 0.01; * P < 0.05. (c)
Representative mature seed images of WT
and mutants under control, HNT and HDNT
conditions. Images were digitally extracted
and scaled for comparison (scale: 1 cm).
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Discussion

We screened a large set of rice accessions to elucidate the extent
of natural variation for impact of HNT stress on grain size
(length and width). Our analysis suggests that the genetic basis of
HNT sensitivity of grain length and width may not be deter-
mined by common regulators, as there are very few accessions
where both grain length and width are highly sensitive or tolerant
to HNT stress. Rice grain length is primarily determined during
early grain development and probably earlier than grain width
(Lizana et al., 2010; Pielot et al., 2015). It is therefore expected
that the genetic determinants of these two traits have distinct
temperature sensitivity across a diverse population. Our GWA
analysis identified several novel loci regulating mature grain
length and width under control and HNT conditions (Fig. 1;
Table S4). We also identified several previously determined loci
(GS3 and qSW5) regulating these traits (Fan et al., 2006;

Shomura et al., 2008; Weng et al., 2008; Huang et al., 2010;
Mao et al., 2010; Zhao et al., 2011; Duan et al., 2017; Liu et al.,
2017), thus validating our experimental setup and analysis.
About 10 loci (GS3, qSW5, and others) were identified as signifi-
cant contributors for grain size traits under both temperature
regimes in our analysis. Some loci, such as ch12:25310347 for
grain length, are unique to HNT stress conditions (Fig. 1).
Another notable SNP (chr8:2098482) colocalized with the Fie1,
which is identified as a significant contributor to grain width
under HNT stress only (Fig. 1). The major allele for the SNP
colocalizing with Fie1 is highly prevalent in the diversity panel
assayed in this study, indicating that the favorable allele is pre-
dominant in rice germplasm. This is not surprising, given the
undesirable starch structure observed in some of the minor allele
accessions under higher temperatures (Fig. S12). This inferior
grain trait has probably undergone negative selection in the rice
germplasm, resulting in selection against the minor allele.

Fig. 5 The outer epidermal surface of rice mature seeds from wild-type (WT), overexpression (fie1OE10 and fie1OE11) and knockout mutants (fie1CR2 and
fie1CR3) subjected to control, high night temperature (HNT), and high day-night temperature (HDNT) stress (bar, 200 µm). Double-headed white arrows
indicate length and width of a representative single-cell in a scanning electron microscopy image.

� 2020 The Authors

New Phytologist� 2020 New Phytologist Trust
New Phytologist (2021) 229: 335–350

www.newphytologist.com

New
Phytologist Research 343



Fie1 encodes a component of the FIS-PRC2 complex in rice
and is related to the duplicated gene Fie2, which is a core compo-
nent of the FIS-PRC2 complex. Unlike Fie1, Fie2 is expressed in
most plant developmental stages, including grain development
(Luo et al., 2009; Zhang et al., 2012; Huang et al., 2016).
Although, there are several instances of allelic variation in epige-
netic modifications (e.g. differential methylation) underlying
variation for agronomic traits (Shindo et al., 2006; Shen et al.,
2014; Fang et al., 2016), we present evidence of allelic variation
associated with the Fie1 as a contributing factor in grain size and
quality determination in rice under high temperatures. Fie1 is
preferentially expressed in endosperm (between 4 and 10 DAF;
Fig. S5) and its transcript abundance in developing grains is
highly sensitive to incremental changes in temperature (Folsom
et al., 2014). The phenotypic variation observed for mature grain
width in response to HNT is associated with a polymorphism
detected in the Fie1 intron, although we have no evidence that
this is a causal SNP (Fig. 2a,b). The major accessions with the
‘CC’ allele (chr 8, location 2099480) tend to have higher grain
width under HNT, while minor allele accessions with the ‘GG’
allele are generally associated with narrower grains under HNT
(Fig. 2a). Interestingly, two of the four tested minor allele acces-
sions (m2, m3) have red pericarp. Red pericarp in rice is linked
to a 14 bp mutation in the Rc gene (Sweeney et al., 2006).
Hence, we wondered if the Fie1 allelic variation could be linked
to the red pericarp. A direct link between the minor allele for
Fie1 and red pericarp is unlikely as Fie1 mutants do not have
altered seed color. Further, a recent work where the Rc gene is
functionally restored reported that grain size is not altered (Zhu
et al., 2019).

The allelic difference in the grain width appears to be a result of
contrasting transcript abundance response of Fie1 in developing
grains under HNT at 7 DAF (Fig. 2c). In this context, the four
accessions tested with higher (major allelic accessions) and lower

(minor allelic accessions) transcript abundance of Fie1 in develop-
ing grains under HNT could be contributing to wider and nar-
rower mature grains, respectively (Fig. 2). It is noteworthy that at 4
DAF, the expression level response of Fie1 to HNT stress was high-
est for the major accession M2, which exhibited the greatest grain
width under HNT, and was lowest for m1, which had the most
slender grains among the examined accessions (Fig. 2c; Table S8).
Overall, our expression analysis indicated that transcript abundance
of Fie1 in developing grains is likely to be a contributing factor in
determining grain width under HNT stress.

We directly tested this hypothesis with mutants (OE, fie1OE10

and fie1OE11; knockouts, fie1CR2 and fie1CR3) misregulating Fie1
abundance (Fig. S8). Knockouts should be specifically affected in
grain development, as Fie1 expression is narrowly limited to this
developmental stage. However, OE lines were generated with the
ubiquitin promoter, resulting in expression throughout the plant.
This was evident from the markedly decreased stature of OE
plants in the absence of any heat treatment. Under control condi-
tions, the mutants possessing overabundance of Fie1 transcripts
showed a significant decrease in mature and developing grain
length and width (Fig. 3). These results are in accordance with
the previous findings that have found the smaller grain size in
OE mutants to be partly a result of precocious endosperm cellu-
larization (Folsom et al., 2014). Furthermore, the mutants defi-
cient in Fie1 exhibited a small but significant increase in mature
and developing grain length and width under control conditions
(Fig. 3) suggesting that Fie1 might act as a negative regulator of
grain size under control conditions. As the GWAS revealed Fie1
as a potential candidate regulating grain width under HNT, we
investigated the impact of HNT as well as HDNT on Fie1
mutants (Figs 4–6). The grains deficient in Fie1 exhibited higher
thermal sensitivity, as evidenced by significant reduction in
mature grain length, width and single-grain weight, as well as cell
width of the outer epidermal cells (Figs 4, 5; Table 1). By

Table 1 Morphometric analysis of outer epidermal surface of rice mature seeds from wild-type (WT), overexpression (fie1OE10 and fie1OE11) and knockout
mutants (fie1CR2 and fie1CR3) subjected to control, high night temperature (HNT) and high day-night temperature (HDNT) stress.

Line Treatment Total number of columns Cells per column Number of cells per unit area Length (µm) Width (µm)

WT Control 6.33 � 0.57 8.66 � 0.51 54.83 � 4.31 95.88 � 11.06 74.26 � 4.86
HNT 7.41 � 0.52 8.33 � 0.51 61.75 � 5.01 81.09 � 8.65*** 59.16 � 5.04***
HDNT 8.25 � 0.95*** 9.80 � 1.12* 81.75 � 15.96*** 66.73 � 8.58*** 53.14 � 5.71***

fie1OE10 Control 8.83 � 0.28 9.33 � 0.51 82.5 � 5.19 69.38 � 8.62 46.53 � 5.28
HNT 8.62 � 0.47 8.87 � 0.83 76.56 � 7.99 78.14 � 16.11** 46.85 � 4.48
HDNT 8.50 � 0.57 8.62 � 0.51 73.25 � 5.50 69.79 � 7.97 48.03 � 4.45

fie1OE11 Control 8.00 � 0.00 8.00 � 0.00 64.00 � 0.00 75.78 � 9.26 51.61 � 5.29
HNT 8.50 � 0.57 8.12 � 0.35 69.12 � 6.19 76.86 � 17.86 51.94 � 10.81
HDNT 8.25 � 0.95 8.50 � 0.75 69.75 � 5.60 77.42 � 13.63 50.30 � 11.12

fie1CR2 Control 5.87 � 0.25 8.00 � 0.00 47.00 � 2.00 103.67 � 6.54 80.09 � 5.28
HNT 8.06 � 0.12*** 8.50 � 0.53 68.53 � 3.43** 76.55 � 7.91*** 51.27 � 4.50***
HDNT 7.75 � 0.5*** 10.50 � 0.75*** 81.25 � 5.73*** 74.05 � 7.81*** 56.46 � 4.20***

fie1CR3 Control 6.41 � 0.52 7.83 � 0.40 50.16 � 2.25 103.61 � 8.01 80.09 � 6.16
HNT 7.50 � 0.43* 10.33 � 1.03** 77.66 � 9.65*** 73.34 � 10.31*** 52.74 � 5.39***
HDNT 6.12 � 0.25 11.25 � 1.90*** 69.25 � 15.37** 76.74 � 13.87*** 62.96 � 4.92***

Total number of columns, cells per column and number of cells per unit area were quantified from three biological replicates. The cell length and width of
outer epidermal cells were quantified from 10 random cells per biological replicate. For statistics, Student’s t-test was used to compare control vs HNT and
control vs HDNT conditions for the respective plant line (� SD; *, P < 0.05; **, P < 0.01; ***, P < 0.001).
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contrast, the grains overexpressing Fie1 were mostly unaltered,
although one line had a small positive impact on mature grain
length under HNT and HDNT (Fig. 4b). Likewise, the develop-
ing grains from the Fie1-deficient mutants showed reduced
length and width at all three time points of early grain develop-
ment (Fig. 6c). This indicates a critical role for Fie1 acting early

during grain development to maintain mature grain size under
heat stress. Although overabundance of Fie1 transcripts in the
OE mutants exhibited a significant increase in developing grain
length and width under HNT and HDNT conditions relative to
the control, this did not carry through to the mature grains in
most cases. This may be related to the fact that OE plants were

Fig. 6 Developing grains of Fie1 knockouts are sensitive to high night temperature (HNT) in rice. (a) Pictogram illustrating heat stress regime. Florets were
marked at the time of fertilization, and at 1 d after fertilization (DAF) plants were subjected to either HNT (30 � 1°C : 28 � 1°C, light : dark), high day-
night temperature (HDNT; 36 � 1°C : 32 � 1°C, light : dark) or constantly kept under control conditions (30 � 1°C : 23 � 1°C, light : dark). The marked
florets were harvested at 4, 7 and 10 DAF (marked with black dots) for downstream analysis. (b) Relative transcript abundance of Fie1 in the wild-type
(WT) at 4, 7 and 10 DAF under HNT and HDNT conditions. Values were normalized against control for the respective time point. Error bars
represent � SD. For statistics, a t-test was used: ***, P < 0.001; *, P < 0.05. (c) Top panel: representative images of developing grain (4, 7 and 10 DAF)
of WT, overexpression (fie1OE10 and fie1OE11) and knockout mutants (fie1CR2 and fie1CR3) under control, HNT, and HDNT conditions. Images were
digitally extracted and scaled for comparison (bar, 1 cm). Developing grain length (middle panel) and width (bottom panel) of the mutants. Error bars
represent � SE. For statistics, a t-test was used to compare HNT and HDNT to the control (n = 15–20 marked developing seeds from four plants per
treatment per line). ***, P < 0.001; **, P < 0.01; *, P < 0.05.
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smaller in stature and were possibly compromised in their ability
to supply resources to grains throughout their development in
comparison to control plants. Also, the WT Kitaake variety used
for transformation already has the ‘CC’ major allele, which may
have maximized the benefit from Fie1 under these conditions.
The increase in mature grain size and size of outer epidermal cells
in the knockout mutants under optimal conditions (Fig. 3;
Table S9) could be a consequence of a longer period of cellular
expansion of seeds and nuclear proliferation, respectively, in seeds
that are deficient in Fie1, a member of the PRC2 complex in rice.
The PRC2 complex is required for timely initiation of
endosperm cellularization, and Fie1 transcript starts to accumu-
late just as the endosperm initiates cellularization (Gehring,
2013; Pires, 2014). Therefore, Fie1 deficiency could delay this
PRC2-mediated endosperm transition. Delayed cellularization is
also associated with increased auxin concentrations in Arabidop-
sis (Figueiredo et al., 2016; Batista et al., 2019). It is feasible that
higher auxin concentrations in Fie1-deficient, overproliferating
coenocytic endosperm inhibit cell wall formation and increase
auxin transport to seed coat tissue, resulting in cellular expansion
and hence larger cell size (Batista et al., 2019; Paul et al., 2020a).
The potential mechanistic link between Fie1 and auxin accumu-
lation and transport needs further examination. Similarly, the
potential molecular association between reduced grain size of
Fie1 knockouts under heat stress and transcript abundance of
grain size regulators needs to be explored in future studies.

It is noteworthy that even though Fie1 knockouts have larger
grains, their grain weight under control conditions is lower rela-
tive to the WT. We reasoned that it could be a result of less dense
packaging of the starch in the knockout endosperm (Fig. 7). The
striking difference in packaging density in the knockouts relative
to the WT, and to a considerable degree for OE mutants (Fig. 7),
is consistent with greater grain size and lower grain weight (Fig.
3). Further, gene expression analysis in the developing grains
exposed to HNT and HDNT suggested that the observed chalky
phenotype is associated with misregulation of starch biosynthesis
genes (Fig. S11). Chalkiness in rice is also associated with nitro-
gen status of the seeds (Wada et al., 2019). It remains to be deter-
mined if some of the Fie1 mutant phenotypes under heat stress
could be ameliorated by supplemental nitrogen. Collectively,
these data suggest that the early endosperm development events
in response to heat stress likely have downstream impact on
starch accumulation, packaging, and overall grain quality besides
decreasing grain size.

Conclusion

Several studies exploring natural variation in the regulation of
important agronomic traits to improve rice grain yield and
quality have been conducted. However, these studies have
largely focused on testing the performance of the identified
alleles under optimal conditions. The impact of these alleles
under suboptimal temperatures has not been determined.
Here, we show that for two grain size traits, some of the allelic
variation is persistent across optimal and HNT stress condi-
tions, while other novel alleles are specific for HNT

Fig. 7 Misregulation of Fie1 alters starch quality under heat stress in rice.
(a) Representative light-box images of 50 mature grains from wild-type
(WT), overexpression (fie1OE10 and fie1OE11) and knockout mutants
(fie1CR2 and fie1CR3) subjected to control, high night temperature (HNT)
and high day-night temperature (HDNT) during grain development (bar,
1 cm). (b) Cross-sections of mature grain of WT and mutants subjected to
control, HNT and HDNT conditions observed via scanning electron
microscopy (bar, 20 µm).
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conditions. We present evidence for one such variant within
Fie1, which is probably associated with grain width under
HNT stress. Although differential methylation at DNA and
histone level has been reported to be the basis for variation of
some agronomic traits, there are not many instances reported
for allelic variation associated with an epigenetic regulator itself
which results in phenotypic variation for agronomic traits.
Our work suggests that Fie1 is one such regulator. The mecha-
nistic basis of differential transcript abundance of Fie1 among
the two allelic groups remains to be elucidated. Based on find-
ings from our work and previous reports, it is possible that
Fie1 function diverged following duplication from Fie2 to
specifically enhance reproductive success in a range of environ-
ments with varying temperatures. As higher dosage of Fie1
could potentially stabilize grain size and grain quality across a
wider temperature range, it was probably selected by farmers
and/or breeders across multiple environments, and hence the
observed predominance of the favorable major allele in rice
germplasm. Future work will also focus on deciphering the
role of uncharacterized novel loci identified in this study for
their role in the regulation of grain yield-related parameters
under heat stress.
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Fig. S1 Principal component analysis (PCA) showing the popu-
lation structure of the rice diversity association panel (RDP1)
used in this study.

Fig. S2 Phenotypic distribution of rice mature grain length and
width under control and high night temperature (HNT) stress.

Fig. S3 Rice subpopulation-level phenotypic distribution of
mature grain length and width under control and high night tem-
perature (HNT) stress.

Fig. S4 Q-Q plots of –log10(P) values obtained from the linear
mixed model for mature grain length and width under control
and high night temperature (HNT) stress in rice.

Fig. S5 Relative transcript abundance of Fie1 in wild-type (WT)
developing seeds (4, 7, and 10 d after fertilization; DAF) under
control conditions in rice.

Fig. S6 DNA methylation analysis.

Fig. S7 Relative transcript abundance of Fie1 neighboring genes
(two upstream and two downstream) in developing seeds in rice.

Fig. S8 The mutants used in the study: Fie1 overexpression (a;
fie1OE10 and fie1OE11) and knockouts (b; fie1CR2 and fie1CR3) in
rice.

Fig. S9 Representative images of wild-type (WT), knockout
(fie1CR2 and fie1CR3), and overexpression (fie1OE10 and fie1OE11)
mutants at day 65 in rice.

Fig. S10 RT-qPCR analysis of rice grain size-related genes.

Fig. S11 RT-qPCR analysis for selected set of rice starch biosyn-
thesis genes in the mutants.

Fig. S12 Cross-sections of mature grains from four major (M1–-
M4) and four minor (m1–m4) allelic accessions under HNT
observed via scanning electron microscopy.
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respect to grain length and width based on ratio of HNT to con-
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Table S10 Yield-related parameters in WT and Fie1 overexpres-
sion (OE) and knockout (CR) mutants under control, HNT,
and high day-night temperature (HDNT) treatments at the
whole-plant level.

Please note: Wiley Blackwell are not responsible for the content
or functionality of any Supporting Information supplied by the
authors. Any queries (other than missing material) should be
directed to the New Phytologist Central Office.

New Phytologist (2021) 229: 335–350 � 2020 The Authors

New Phytologist� 2020 New Phytologist Trustwww.newphytologist.com

Research

New
Phytologist350

https://doi.org/10.1101/2020.06.28.176230

